Renormalization group domains of the scalar Hamiltonian . ∗

نویسندگان

  • C. Bagnuls
  • C. Bervillier
چکیده

Using the local potential approximation of the exact renormalization group (RG) equation , we show the various domains of values of the parameters of the O(1)-symmetric scalar hamiltonian. In three dimensions, in addition to the usual critical surface S c (attraction domain of the Wilson-Fisher fixed point), we explicitly show the existence of a first-order phase transition domain S f separated from S c by the tricritical surface S t (attraction domain of the Gaussian fixed point). S f and S c are two distinct domains of repulsion for the Gaussian fixed point, but S f is not the basin of attraction of a fixed point. S f is characterized by an endless renormalized trajectory lying entirely in the domain of negative values of the ϕ 4-coupling. This renormalized trajectory exists also in four dimensions making the Gaussian fixed point ultraviolet stable (and the ϕ 4 4 renormalized field theory asymptotically free but with a wrong sign of the perfect action). We also show that very retarded classical-to-Ising crossover may exist in three dimensions (in fact below four dimensions). This could be an explanation of the unexpected classical critical behavior observed in some ionic systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

A numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators

Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...

متن کامل

0 Renormalization group domains of the scalar Hamiltonian . ∗

Using the local potential approximation of the exact renormalization group (RG) equation , we show the various domains of values of the parameters of the O(1)-symmetric scalar Hamiltonian. In three dimensions, in addition to the usual critical surface S c (attraction domain of the Wilson-Fisher fixed point), we explicitly show the existence of a first-order phase transition domain S f separated...

متن کامل

Nonperturbative renormalization in a scalar model within Light-Front Dynamics

Within the covariant formulation of Light-Front Dynamics, in a scalar model with the interaction Hamiltonian H = −gψ2(x)φ(x), we calculate nonperturbatively the renormalized state vector of a scalar ”nucleon” in a truncated Fock space containing the N , Nπ and Nππ sectors. The model gives a simple example of nonperturbative renormalization which is carried out numerically. Though the mass renor...

متن کامل

CORE Technology and Exact Hamiltonian Real-Space Renormalization Group Transformations

The COntractor REnormalization group (CORE) method, a new approach to solving Hamiltonian lattice systems, is presented. The method defines a systematic and nonperturbative means of implementing KadanoffWilson real-space renormalization group transformations using cluster expansion and contraction techniques. We illustrate the approach and demonstrate its effectiveness using scalar field theory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008